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Abstract—Unsteady free convection from a semi-infinite horizontal plate is analysed when the plate
temperature varies periodically in time about a constant mean. Separate solutions for low and high
frequency ranges are developed. It is found that for low frequencies the oscillatory component of the
Nusselt number at the plate increases as the Prandtl number increases. For very high frequencies the

temperature field is of the shear-wave type unaffected by the steady mean flow.

NOMENCLATURE
time;
dimensionless time, vi/L,;
co-ordinate along the plate mea-
sured from the leading edge;
dimensionless co-ordinate along
the plate, X/L;
co-ordinate perpendicular to the
plate;
dimensionless co-ordinate per-
pendicular to the plate, y/L;
velocity component along X;
dimensionless  velocity com-
ponent, ulL/v;
velocity component along y;
dimensionless  velocity com-
ponent, vL/v;
fluid temperature ;
dimensionigss fluid temperature,
free stream temperature;
temperature at the plate;
characteristic length,
[0B(T, — TH*17%;
pressure ;
density;
free stream density;
coefficient of thermal expansion;;
acceleration due to gravity,
thermal diffusivity of fluid, x/pc,;
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Us, Vs, T;*
Uy, Uy, Tls
d(x),

qo,
Nu,,

To,
5,

ur.‘ Ur.* ’I:'a
Uy, vy, T,

thermal conductivity of fluid;
specific heat of fluid;

fluid viscosity;

kinematic viscosity of fluid, u/p;
Prandtl number, v/K ;

frequency of oscillation;
dimensionless frequency, @I12/v;
amplitude of oscillation;

a constant depending on o,
[3(7/176)* 10%];

steady flow components;

small oscillating components;
dimensionless boundary-layer
thickness;

local heat transfer at the plate in
steady state;

local Nusselt number in the steady
state;

local skin friction;
non-dimensional local skin fric-
tion at the plate;

in-phase components;
out-of-phase components;
temperature difference between
the plate and free-stream tempera-
tures, T,, — T ;

steady dimensional mean flow
components;

local Nusselt number ;

local heat transfer at the plate for
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small frequency oscillation;

Nu, small oscillating Nusselt number;
1, skin friction ;
T*, non-dimensional skin friction,
§ + et¥;
¥, non-dimensional small oscillating
component of skin friction;
7 non-dimensional variable, y./o.

1. INTRODUCTION

THE PRESENT paper is devoted to a study of the
flow and heat transfer from a semi-infinite hori-
zontal plate whose temperature oscillates about
a constant mean. Free convection flow from a
horizontal plate has not received much atten-
tion. Recently Gill and Casal [1] considered
some aspects of this problem. They obtained
similarity solutions of the boundary-layer equa-
tions for steady flow over a semi-infinite hori-
zontal plate. Sparrow and Minkowycz [2] have
also considered free convection effects on a
horizontal plate by employing a series expansion
of the stream function, which gives the perturba-
tion of a basic forced convection flow due to
buoyancy. The basic steady flow in our case is
different since we have assumed the free stream
to be at rest. Thus the basic flow is entirely due
to buoyancy forces over a horizontal plate whose
temperature differs from that of the free stream.
The effect of the buoyancy forces is to induce a
longitudinal pressure gradient which causes
flow. It is an interesting flow in its own right
yielding a steady outer flow for the boundary-
layer equations as a result of free convection
alone. Moreover this problem should be easily
amenable to experiment in a laboratory. We
have, therefore, considered the basic steady flow
also in detail since there is no previous theo-
retical work reported in the literature on this
problem. For the situation in which the plate
temperature T,, is greater than the free stream
temperature T,, it will be difficult to realise such
a flow above a horizontal plate because of the
unstable stratification due to the piling of
“heavier fluid on lighter fluid”. In such cases one
should consider the flow below the plate.
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The study of the oscillatory flow is restricted
to small amplitudes (¢) only. This enables us to
employ the techniques of linearization and still
retain first-order effects of piate temperature
fluctuations. This type of technique was first
employed by Lighthill [4] and later used by
many workers. Separate solutions for low and
high frequencies are developed. For low fre-
quencies and for ¢ = 01, the analysis predicts a
12 per cent increase in the Nusselt number and
about 6 per cent increase in the skin friction
coefficient at the plate. In the limiting case of
very high frequencies, the oscillatory component
of the temperature field is of the simple shear
wave type unalfected by the mean flow pre-
dicting a phase lead of n/4 in the heat transfer at
the plate. In the intermediate frequency range
the velocity and temperature fields are more
complicated due to the interaction of the steady
mean flow.

2. BASIC EQUATIONS

Consider a semi-infinite horizontal flat plate
with x-axis along the plate measured from the
leading edge and y-axis vertically upwards. The
usual boundary-layer equations in two dimen-
sional flow are

o _du _ou 1ép 0%
Gt et s Q)
oz_%_qp, (22)
% %:o‘ (23)
gz+ag+5%§= %-—f (2.4)

where g is the acceleration due to gravity and
K(= x/pc,) is the thermal diffusivity.

In accordance with the usual practice, we
shall consider density variations only in the
buoyancy force, other density variations will be
neglected within the framework of incompres-
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sible fluids. The simplest way to do so is to take  p,, is the free stream density and T, is the free

the equation of state in the form stream temperature.
It is convenient to eliminate p from (2.1) and
p=ps[1 —BT—- Tl (2.5) (2.2) by differentiating (2.1) with respect to y and

(2.2) with respect to x and subtracting and
where f§ is the coefficient of thermal expansion. making use of (2.5) to get

(%[% ﬁ% vg—;]:va;?—gﬂi(T—Tm), (2.6)
Introducing the dimensionless variables
x=X/L, y=7¥/L  t=vi/[2, u=ulL/v, v = oL/v,
T =(T — TAT, — T,). } (2.7

where L is the characteristic length [g8(T,, — Tw)/vz]“* and T,(> T,) is the mean temperature of
the plate. equations (2.6). (2.3) and 2.4) finally take the forms

0 [a“+ua”+v9”-‘]—@—a—T—’ (2.8)
dy Lot ox dyl a8y ox :
L% g (2.9)
ox  dy ’

oT oT oT 10°T

where o is the Prandtl number.
It may be remarked here that these equations do not hold at the leading edge. Therefore, it is
probable that the results may be expected to apply only far from the leading edge.
We shall consider the case when the plate temperature oscillates harmonically in time about a
non-zero mean. The boundary conditions to be satisfied will be
u=0, v=0, T =1+ ecos wt, e<1 at y =0,
u—0, T-0 as y— o0, (2.11)

where o is the dimensionless frequency &I%/v.

3. METHOD OF SOLUTION
In order to solve the above differential equations it is convenient to use the complex notation for
harmonic functions in which only real parts will have physical meaning. The plate temperature,
which can be written as [T,, + «(T,, — T, exp (i@f)], consists of a basic steady distribution T, with
a superimposed weak time varying distribution ¢(T,, — T, ) exp (i@i).
We now write u, v and T as the sum of steady and small oscillating components
u = u; + cu exp (iwt),
v = v; + € vyexp (iwt), (3.1

T =T, + €T, exp (iwt),
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where u,, v, T, is the steady mean flow and satisfies
0 [u dug ﬁus:! _ 0%, 0T,

1 x| T
dug  Ovg
5;+~5;—0, (3.2)

T, 10T
ax | Sy ooyt

Ug

with the boundary conditions
u, = v, =0, T, =1 at y=0,
(3.3)

u, =0, T,-0 as y - .

Neglecting squares of ¢ and dividing by exp (iwt), we find that u,, vy, T; satisly the following
differential set,

= 0,

Sy | o ox’ ox  dy

i'u+u%+uau1'+ 6u5+v(3ul _Puy 0T, 6u1+_(3_v_1_
dy 1Ot T ox * 0x ”1ay §

in1+ula—;+usTa—)<«+v, 6}’ Dy ay =65}72~
with the boundary conditions
ulzvlzo, T1=1 at y=0,
(3.5)
u; — 0, T, -0 as y - oo.

Equations (3.2) and (3.3) are the boundary-layer equations which describe the steady state free
convection flow over a semi-infinite horizontal flat plate maintained at a constant temperature T,,.
These equations are the same as those obtained by Gill and Casal [ 1 ] but the boundary conditions are
different. They have assumed the existence of a uniform free stream velocity whereas in our case
the free stream is assumed to be at rest. Thus the flow is purely due to buoyancy effects which
induce a longitudinal pressure gradient given by

P = g j LT - T4y, (3.6)
0x X
¥
which causes the flow.

For flow below the plate, the co-ordinate y would be reversed to measure distances vertically
downwards and the negative sign in equation (3.6) would be deleted. It follows with a flow above the
plate for which T,, > T, or for a flow below the plate for which T, < T, the induced pressure
gradient dp/0% is negative resulting in an accelerated flow. For flow below the plate for T, > T, or
for flow above the plate for T, < T, the situation will be just reversed. It is therefore sufficient to
consider only one of the four situations. For convenience we shall discuss flow above the plate for
T, >T,.

We shall first consider the set of equations which describe the basic steady flow. We shall integrate
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these equations by Karman—Pohlhausen method since our aim is to get qualitative results. Towards
this end we put these set of equations in integro-differential form by integrating from y = 0 to
y = 6, where §(x) is the dimensionless boundary-layer thickness, as

L]
0%u, 0
(a—y2>y=0 + EEJ' T,dy =0, (3.7
0
1
i,( u T, dy +— o, =0. (3.8)
0x J o\dy/,-0
Consistent with the boundary conditions
u, =0, T,=1 at y=0,
Ou, o%u, (3.9
U, _é;)-’ Ez——»o, T;—’O as y—*é,

we take the expressions for u; and T, as

=47(1._7 ’ 4

ug = A5 (1 5) (1 + 5), (3.10)
T ={1+ Y _J ’
s (l 5) (1 5)’ (.11)

where A and ¢ are functions of x to be determined from equations (3.7) and (3.8). These expressions
for u; and T, also satisfy the additional conditions
Pu_ o OT,_
ay* -
which are obtained by evaluating the first and third equations of (3.2) at y = 0.
Substituting these expressions (3.10) and (3.11) into (3.7) and (3.8). we get

0 at y=0, (3.12)

44 3 d

7 " 10ax0 =% G-1)
17 d 2

§30dx 10 " 55 = 0 19

The solutions of these equations are easily found to be

A= 2% N3xt, (3.15)
5 = 2Nx?, (3.16)

where

N

()]



722 P. K. MUHURI and M. K. MAITI

From these simple expressions we find that the boundary-layer thickness varies as x! and de-
creases as the Prandtl number increases. It is also clear from (3.16) that (y/2x%) is the similarity
variable for free convection from a horizontal plate. The Table 1 shows the values of (§/2x?) for
various values of o.

In Figs. 1-3 are plotted u,/x* and T, against y/2x* for a fairly representative range of values of a.
It is found that both the velocity and the temperature at any point within the boundary layer de-
crease as the Prandtl number increases.

The local heat-transfer at the plate is given by

_ k¥? (67;) Ky x7#
o= = \oy),-o gfF N

Table t

a=001 ¢=01 6=072 o=1I e=5 o=10

§/2x} 6-6349 41867 2:8215 26416 19146 1:6667

I
3 X275

Fi1g. 1. The steady and oscillating components of velocity
and temperature for ¢ = 0-1.
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FiG. 2. The steady and oscillating components of velocity ~ FiG. 3. The steady and oscillating components of velocity
and temperature for ¢ = 0-72. and temperature for o = 5.

which can be expressed in terms of the Nusselt number as

qOL 1 _,
N = — %= .= 3, 317
T RT,-T,) N 3.17)
Similarly the skin friction at the plate can be expressed as
.2 3 _
¥ = ﬁ? = ES—NZx %) (3.18)

The expressions for Nu, x* and ¢4 x* are calculated for various values of ¢ and given in Table 3.
The table shows that the Nusselt number at the plate increases while the skin friction decreases as
o increases.

Set (3.4) is next considered. It is convenient to write u;, v, and T; as the sum of in-phase and out-
of-phase components as

u; = u, + iy,
vy = v, + vy, (3.19)
Tl = T;. + sz

Substituting into (3.4) and separating real and imaginary parts we get

91- Wiy + U o, +v Ot +u Ouy +v Ous _ o, _9L (3.20)
dy 2T Tex  Cay  Tox o "oy oy} ox’ '
ou, Ov
r =0, 21
™ + o 0. (3.21)
0T, o7, oT, oT, 12T,
— T Zr a4 s s 12 r ]
a)2+us6x+vsay+u,ax+v,ay '05‘_)72 (3.22)
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with the boundary conditions

u, = v, =0, T =1 at y=0,
40 T-0 as y- o, 62
and
0 ou, 6u2 Ou, ou,| u, 0T,
Ep [ + us-a'— +v + Uy o >+ v, 6y:| “‘5)}7 R (3.24)
ou, Ov,
R 0, (3.25)
oT, 6T2 oT, oT, 10°T,
T = sl 2
wl, + u,—— x + v + u, ox + v, ay o ayz (326)
with the boundary conditions
Uy = v, =0, T,=0 at = (),
uy = 0, T,—-0 as y - co, (3.27)

Thus

tan“‘(ﬁ) and tan"(g)
4, 1,

will represent the phase shifts in the velocity and temperature fluctuations in the boundary layer
due to fluctuations in the plate temperature. When the frequency of oscillation is low it is to be ex-
pected that the phase shifts will be small. Therefore, one would expect u, and T, to be small relative
to 4, and 7,. Thus when w is small, the terms (— wu,) and (— @T,) can be neglected in (3.20) and
(3.22). u,, v, and T, will then be the quasi-steady solution corresponding to @ = 0. This can also be
seen from the fact that the same equations can be obtained by substitutingu = u, + eu,, v = v, + €v,
and T = T, + T, in the steady flow boundary-layer equations. It can be easily verified that

_LT, ({:ht )

U
" v \8T,

~

LT, (v,

v =— (6T0> (3.28)
T,

T;—_é?‘;ﬁ

where T, = (T,, — T,). With the help of equations (3.10) and (3.11) we have

2 )
we i3 0-5) 025 75)
2 Z
P -5 6onieog)



FREE CONVECTION OSCILLATORY FLOW 725

and v, can be obtained from the equation of continuity (3.21).
We shall next consider equations (3.24) and (3.26) through (3.27). Accordingly we assume poly-
nomials for ¥, and T, as

2 3 4 ]
¥

uz=A0+A,§+A2§5+A3%+A4§E+AS§. (3.31)
2 3 4 5
Tz=CQ+C1§+C2§’§+C3§_3+C4§{+C5§‘ (3.32)

where A’s and C’s are functions of x only. These will be determined by imposing the following
boundary conditions on u, and T, and their derivatives:

u2=0 T2=O at yﬁo,

auz 5142_ “6T2_52T2“ _
BT BTy T 0 mvs=e

(3.33a)

Two more boundary conditions can be generated by evaluating equations (3.24) and (3.26) at
y = 0as

3.33b)
1 fo2T, (
otyo-1 G2)

3 [ 2
N A 2 y
u2—5(1 ‘5) E As (1+5)], (3.34)

_ Ly 7y’ —_1. 2 X)]
T, = 35(1 5) -2&)0'5 + C; 1-{-3(5 . (3.35)

Here A5 and Cjs are still undetermined. They will be determined from the momentum integral
equations corresponding to equations (3.24) and (3.26). Integrating equations (3.24) and (3.26) from
y = 0 to y = 6 and making use of (3.25) and (3.27) we get the momentum integral equations as

&
d f (a%)
T, dy + =0, 3.36
a J 2 ay s=o0 s ( )

s
fT dy + —f(u T, + u,T)dy + - (‘Z:) =0 (3.37)
¥

=34)

0
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Substituting equations (3.34) and (3.35) into (3.36) and (3.37) we get

44; wA 1 d |wed®
s | 4 TG =0 (38
6 d 11 17 13
— wd Il P 3 0 T 3
5 T ax [15120‘” 6305 ~ 13120 1°°°
139 wd  Cs
Zi%é'(SA‘s 5] 6 s 0 (3.39)
These differential equations can be easily solved to give
AS = (})Fx.
Cs = wEx*, (3.40)
where E and F are constants given by
125F — 10N3E — (6 + 106)N° = 0
and
11 N® 17 139 E (3.41)
—N+-——(11 = 136) = —NF — ——EN* - —— = 0.
75N * 3635 9~ 333 61875 2" om0

The Table 2 shows the values of E and F for various values of o.

Table 2
c=001 6=01 o¢=072 o =1 =75 o =10
E - 79945 —43896 56952 —64591 —143936 —21-3489

F 4404757  46:3781 86489 69392 34410 2-9989

4. RESULTS

When the frequency of oscillation is small, the temperature in the boundary layer and the longi-
tudinal component of velocity may be written in the forms

T=T,+ ¢R;cos(wt + ay),
u = u, + € R; cos (wt + ay), } @0
where
Ry = (T} + TH R, = (u} + u3)*
o, = tan" YT/T), o, = tan™ Yu,/u,).

The functions u,. u,, T, and T, are shown in Figs 1-3 for ¢ = 0-1, 0-72 and 5. 4, is positive near the
plate and negative away from the plate. For the values of o considered it is found that the lower
is the Prandt! number, greater is the distance from the plate where u, changes its sign. On the other
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hand, u, is always negative and increases in magnitude as the Prandtl number decreases. This
shows that the velocity fluctuations near the plate lag behind the plate temperature oscillations.
On the other hand for ¢ = 01, T, is positive near the plate but for ¢ = 0-72 and ¢ = 5, it is negative
but T, remains positive. This shows that the temperature oscillations near the plate anticipate the
plate temperature oscillations for small values of 0. This phase lead is more than compensated as o
increases.

The local Nusselt number at the plate can be expressed as

__ e
T K(T,-T,

6 2 2yt ) )2]%
R; = [(SNX%) + N2 <20N + E .

Sw x*
oy = tan~! [a)x (26N? + E)}

1
Nu —— + e Rycos{wt + a3)] = Nuy + € Nuy, 4.2)
N x?

where

36

The local skin-friction at the plate can be calculated as

*==T—Li= %) + eexpliot (%)
f pv? /=0 P ) 3y /=0

3
= ENZx"* + € R, cos (wt + ay)

=1§ +et¥ {4.3)

9 N3\ oixt (4 Z]Jf
Re= [(Tzs;?) TNt (FsN "‘F) :

125 wx® (4
= tan~! |- 20 (NS - F)].
*a = fan [18 RE (125 F)]

This shows that both tan «; and tan «, vary as wx*. In Figs. 4 and 5 are plotted the functions
(tan a3/wx?) and (tan o,/wx?) against ¢. It is clear that tan «, is positive for all values of ¢> 0-12,
but tan o, is always negative. This shows that the oscillating component of the Nusselt number at
the plate anticipates while the skin friction lags behind the plate temperature oscillations. The
amplitudes R, and R, are found to increase as  increases. The minimum values of R; and R (@ = 0)
are given in Table 3 for various o along with t¥ and Nu,,.

It is interesting to note that the ratios [¢ Nu,(w = 0)/Nu,] and [¢ t¥(w = 0)/t¥] remain constant
for all values of . Thus for ¢ = 01 the quasi-steady Nusselt number is 12 per cent of the steady
value whereas the skin friction coefficient is 6 per cent of the steady mean value.

where

High-frequency oscillations
For high-frequencies, Lighthill [3] has shown that the oscillatory flow is of the “shear wave”
type and its thickness is small compared to the steady boundary-layer thickness. Within this layer
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the steady flow may be approximated as

ou y? (0%u
uszus(0)+y(v-‘) +—< o+
/=0 L2\0V*),-0

3 3
2 NIty — S Nxig? 4
*3s TR

il 2 (o2
vszvs(0)+y<%) +y_2<5_v;) + ...
V/y=0 L\0y" ;=0 S

3
~— N $y2 4
5 X T

R
|

If we introduce the variable n = y\/ o in the equations (3.4) we get

on? o won\ 'ox | ox

1 5( Jug 6u1) 1 0T,

* Jodm R R e
1 o2t -4
ox o

0T, . i 6Ts+ oT, a ( 8T + ('J’T1
on? = \M e T e \/w Yon ‘an

This suggests that for large w, a solution may be developed in inverse powers of \/w. We write

P

1 1
“1=u10+%u11+w“12+ 413 + .
(4.6a)

1 1 1
T1—T10+\/ T11+wT12+ —5 T+ ..

Substituting the series (4.6a) in equation (4.5) and using the approximated steady flow given by (4.4),
we have for the first approximation

o3 J
“;o _ ;%o _ 0.
on on (4.6b)
2
T
g*“l-O _— iJTlo = 0

on?
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Table 3
c=001 o0=01 ¢=072 o=1 o= ¢ =10
x*Ry(w=0) 01808 02866 04253 (4542 06268 07200
xt R, (0= 0) 3-1696 1-2620 0-5732 0-5025 0-2639 0-2000
xt ¥ 52826 2-1034 0-9553 0-8373 04399 0-3333
x* Nu, 0-1507 0-2388 0-3544 0-3785 05223 0-6000
Nu(w=10)
120 1:20 120 1-20 1-20 1-20
Nu,
Hw=0
%*) 060 060 060 060 060 060
¢
subject to the boundary conditions
ulo = 0.. TIO = 1 at n = 0, }
4.7
U — 0, Tio—0 as - 0. @7
The solutions of these equations give
o =0,

Tio = exp [ — (io)¥]

} (4.8)

which is unaffected by the steady mean flow. Interaction terms, however, appear in the subsequent
higher approximations.

32

28

24

20

ton s
w x4/5

o8

-08

L

FiG. 4. Tangent of phase angle of the oscillating temperature

gradient (low frequency).

tan ag

FiG. S.

wxd/ﬁ

04

-04

-2Q

—2-8l-

Tangent of phase angle of the oscillating velocity
gradient (low frequency).
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For the next approximation we have

&uy _ . Cuy -0
on’ n ’
’T, (4.9)
on —icT; =0
subject to the boundary conditions
u11=0. T“:O at ’1: N }
uy; -0, T,,—-0 as - oo. (4.10)

The solutions of these equations are evidently
u;, =0, T, =0.

In a similar way T}, and u,, come out to be zero. In fact the next non-zero term in the expansion
of T is Ty, and it satisfies the equation

8;723 —ioTy; = %Nzax'%nz 6;" (4.11)
with the boundary conditions
T3 =0 at =0,
T3 -0 as n— oo. } (4.12)
Solving we get,
T3 = iaNzx"g (1 n + n? + L) exp [— (/iom]. (4.13)
250 2\/(10 2i

The first non-zero term in the expansion of u; is found to be u,¢ and it satisfies the equation

uye duye 0Ty

— = 4.14
m>  Ton | ox (+14)
with the boundary conditions
U =0 at n =20,
0 4.15
U — 0. ﬂ—»O as n— . (15)
on
The solution is
53M* — 10iM? — 3 _ 1 1 1,
Mo = = anp — g P LT Wiml - m[a" 7k
1 1 M?Z—i 3M? 4
- M2  A\n2
+2M2’7+M3—1M{ M7 o 10 ’)"}

1 {(3M2 —)OM? + i)
T (M?® — iM)? M
where M = /(io).

—23M? — i)zn}] exp (— Mpn). (4.16)
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When the frequency of oscillation is large the temperature field may be written as

T =T, + eRsexp [— (/o/2) n] cos [wt — (o/2)n — as], (4.17)
where

Rs = (P3 + Q3)%, as = tan~ ' (Qs/Ps),

py =14 20X ("—3+ "
s 250w* \3 '2(/20)’
36N2x~Y [ n? n
%= "2500F (2(\/2<7)Jr 2_o>’

The local Nusselt number from the surface to the fluid for high frequencies may be written as

Nu = <%) —eexp(iwt)(a—zl)
ay y=0 ay y=0

N71x"% 4 € R4 cos (wt + ag), (4.18)

R _{aw \/aw N 3N2x_%]2}%
s =12 TIV\2/) " 00w |
s 3DNx
o, = tan <1 + mSOO(\/a)w% .

The velocity gradient at the plate can be written as

du ou n
Re|— == —cw ¥R, cos (ot — =}, (4.19)
(ay>y=0 <6y>_v=0 ’ ( 4)

5362 — 106 — 3] [3le? — 220 + 7
Ry = [(\/”)_1] [ 22 (1 — o) ] + [ 263 (1 = o) ]

It is interesting to note that for very high frequencies, the velocities set up will be extremely
small being of the order of @~ 3. The Nusselt number at the plate has a phase lead which tends to
shear wave value n/4 as w — oo, while the skin-friction has a phase lag of n/4. These results are the
same as obtained by Nanda and Sharma [4] for a vertical plate.

where

where
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Résumé—La convection naturelle transitoire & partir d’une plaque horizontale semi-infinic est analysée
lorsque la température de Ia plaque varie périodiquement dans le temps autour d’une valeur moyenne
constante, On établit des solutions séparées pour les gammes de fréquences basses et élevées. On trouve
que la valeur quasi-permanente (@ = 0) du nombre de Nusselt sur la plaque croit lorsque le nombre de
Prandtl augmente. Pour des fréquences trés élevées le champ de température est du type onde de cisaille-
ment non modifiée par I’écoulement moyen permanent.

Zusammenfassung—Instationire freic Konvektion von einer halbunendlichen waagerechten Platte wird
wird fir den Fall analysiert, dass sich die Plattentemperatur periodisch um einen konstanten Mittelwert
dndert. Getrennte Losungen sind fiir niedrige und hohe Frequenzen ermittelt. Es zeigt sich, dass fiir
niedrige Frequenzen die Schwingungskomponente der Nusseltzahl an der Platte zunimmt, bei zuneh-
mender Prandtlzahl. Fiir sehr hohe Frequenzen zeight das Temperaturfeld Scherwellen und bleibt unbe-
einflusst vom mittleren stationiren Fluss.

Anporamma—IIpoBeied anaJ M3 npoHecca HeCTaLUUOHADHOH cBOGOHON KOHBeKHMM NOXY-

feckoHe4HO! rODH3OHTANBRHON NIACTHHH NP NEPHOXMYECHOM HAMEHEHMM CO BDEMEHEM ee

Temneparyps. Iloxyuens oTnenpunie pemieHnst QA JUANa30HOB BHCOKMX H HMBKMUX 4acTOT.

Haitgeno, 4ro ¢ pocrom umcia IIpanarnA yBesmuMBaeTCs KBasHCTALMOHApHOEe 3HAYEHMe

(w = 0) xpurepus Hycceanra. Ilpu ovenp GONBHIMX YACTOTAX IOJEe TEMHNEPATYPH CXORHO C
BOJIHOM KAacaTeNLHOTO HANPHAMEHNsA, HA 3aBUCAIelt OT CTAITHOHAPHOrO NOTOKA.



