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FREE CONVECTION OSCILLATORY FLOW FROM A 
HORIZONTAL PLATE 
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Abatrae-Unsteady free convection from a semi-infinite horizontal plate is analysed when the plate 
temperature varies periodically in time about a constant mean. Separate solutions for low and high 
frequency ranges are developed. It is found that for low frequencies the oscillatory component of the 
Nusselt number at the plate increases as the Prandtl number increases. For very high frequencies the 

temperature field is of the shear-wave type unaffected by the steady mean flow. 

NOMENCLATURE 

time ; 
dimensionless time, vf/L, ; 
co-ordinate along the plate mea- 
sured from the leading edge ; 
dimensionless co-ordinate along 
the plate, Z/L ; 
co-ordinate perpendicular to the 
plate ; 
dimensionless co-ordinate per- 
pendicular to the plate, J/L ; 
velocity component along X ; 
dimensionless velocity com- 
ponent, iiL/v ; 
velocity component along j; 
dimensionless velocity com- 
ponent, CL/v ; 
fluid temperature ; 
dimensionless fluid temperature, 
(T - T,)/(‘i;, - T,); 
free stream temperature ; 
temperature at the plate ; 
characteristic length, 
[@(‘ii, - z&J2]-+; 
pressure ; 
density ; 
free stream density ; 
coefficient of thermal expansion; 
acceleration due to gravity ; 
thermal diffusivity of fluid. rc/pcp; 

717 

thermal conductivity of fluid; 
specific heat of fluid ; 
fluid viscosity ; 
kinematic viscosity of fluid, p/p ; 
Prandtl number, v/K ; 
frequency of oscillation ; 
dimensionless frequency, 6L?/v ; 
amplitude of oscillation; 
a constant depending on O, 
[3(7/174* lo%]; 
steady flow components ; 
small oscillating components ; 
dimensionless boundary-layer 
thickness ; 
local heat transfer at the plate in 
steady state; 
local Nusselt numberin the steady 
state ; 
local skin friction; 
non-dimensional local skin fric- 
tion at the plate ; 
in-phase components ; 
out-of-phase components ; 
temperature difference between 
the plate and free-stream tempera- 
tures, TW - TW ; 
steady dimensional mean flow 
components ; 
local Nusselt number ; 
local heat transfer at the plate for 
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small frequency oscillation; 
small oscillating Nusselt number ; 
skin friction ; 
non-dimensional skin friction, 
zo* + 67;; 
non-dimensional small oscillating 
component of skin friction ; 
non-dimensional variable, y,/o. 

1. INTRODUCTIOlV 

THE PRESENT paper is devoted to a study of the 
flow and heat transfer from a semi-in~nite hori- 
zontal plate whose temperature oscillates about 
a constant mean. Free convection flow from a 
horizontal plate has not received much atten- 
tion. Recently Gill and Casal [l] considered 
some aspects of this problem. They obtained 
similarity solutions of the boundary-layer equa- 
tions for steady flow over a semi-infinite hori- 
zontal plate. Sparrow and Minkowycz [2] have 
also considered free convection effects on a 
horizontal plate by employing a series expansion 
of the stream function, which gives the perturba- 
tion of a basic forced convection flow due to 
buoyancy. The basic steady flow in our case is 
different since we have assumed the free stream 
to be at rest. Thus the basic flow is entirely due 
to buoyancy forces over a horizontal plate whose 
temperature differs from that of the free stream. 
The effect of the buoyancy forces is to induce a 
longitudinal pressure gradient which causes 
flow. It is an interesting flow in its own right 
yielding a steady outer flow for the boundary- 
layer equations as a result of free convection 
alone. Moreover this problem should be easily 
amenable to experiment in a laboratory. We 
have, therefore, considered the basic steady flow 
also in detail since there is no previous theo- 
retical work reported in the literature on this 
problem. For the situation in which the plate 
temperature ‘ii, is greater than the free stream 
temperature T_,, it will be difficult to realise such 
a flow above a horizontal plate because of the 
unstable stratification due to the piling of 
“heavier fluid on lighter fluid”. In such cases one 
should consider the flow below the plate. 

The study of the oscillatory flow is restricted 
to small amplitudes (E) only. This enables us to 
employ the techniques of linearization and still 
retain first-order effects of plate temperature 
fluctuations. This type of technique was first 
employed by Lighthill [4] and later used by 
many workers. Separate solutions for low and 
high frequencies are developed. For low fre- 
quencies and for L = 0.1, the analysis predicts a 
12 per cent increase in the Nusselt number and 
about 6 per cent increase in the skin friction 
coefiicient at the plate. In the hmiting case of 
very high frequencies, the oscillatory component 
of the temperature field is of the simple shear 
wave type unaffected by the mean flow pre- 
dicting a phase lead of n/4 in the heat transfer at 
the plate. In the intermediate frequency range 
the velocity and temperature fields are more 
complicated due to the interaction of the steady 
mean flow. 

2. BASIC EQUATIONS 

Consider a semi-infinite horizontal flat plate 
with x-axis along the plate measured from the 
leading edge and y-axis vertically upwards. The 
usual boundary-layer equations in two dimen- 
sional flow are 

i2.3) 

- 

(2.4) 

where g is the acceleration due to gravity and 
K( = K/PC,,) is the thermal diffusivity. 

In accordance with the usual practice, we 
shall consider density variations only in the 
buoyancy force, other density variations will be 
negiected within the framework of incompres- 
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sible fluids. The simplest way to do so is to take pa, is the free stream density and ;ii, is the free 
the equation of state in the form stream temperature. 

It is convenient to eliminate j from (2.1) and 

P = PJl - P(T- %)I, (2.5) (2.2) by diiferentiating (2.1) with respect to j and 
(2.2) with respect to X and subtracting and 

where fi is the coefficient of thermal expansion. making use of (2.5) to get 

(2.6) 

Introducing the dimensionless variables 

x = X/L, y = J/L, t = vf/L2, u = iiL/v, v = iiL/v, 

T = (T - T&(i-r;, - ‘ii,), (2.7) 

where L is the characteristic length [gB(T, - T,)/v2]-* and T,,,( > T,) is the mean temperature of 
the plate. equations (2.6). (2.3) and 2.4) finally take the forms 

a au _ -+u!!+o:” 
[ ay at 1 ay 

2e_!?T~ 
ay3 ax 

a”+?!?=(), 
ax ay 

aT aT aT 1 a2T 
z+uz+vy=;ay2 

(2.8) 

(2.9) 

(2.10) 

where CJ is the Prandtl number. 
It may be remarked here that these equations do not hold at the leading edge. Therefore, it is 

probable that the results may be expected to apply only far from the leading edge. 
We shall consider the case when the plate temperature oscillates harmonically in time about a 

non-zero mean. The boundary conditions to be satisfied will be 

u = 0, v = 0, T = 1 + c cos ot, t+ 1 at y = 0. 

u + 0, T+O as y-+00, (2.11) 

where o is the dimensionless frequency CiiL?/v. 

3. METHOD OF SOLUTION 

In order to solve the above differential equations it is convenient to use the complex notation for 
harmonic functions in which only real parts will have physical meaning. The plate temperature, 
which can be written as [‘i;w + E(T~ - T,) exp (i~f)], consists of a basic steady distribution T, with 
a superimposed weak time varying distribution E( T, - TJexp (iEf). 

We now write u. v and T as the sum of steady and small oscillating components 

u = u, + tu,exp(iwt). 

v = v, + cu1exp(iot), 

T = T, + E Tl exp (iwt), I 

(3.1) 
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where u,, vSr Ts is the steady mean flow and satisfies 

~[~~~+~~~I=~_~. 

2 + % = 0, 
ay 

aq ar, ia2q 
%ax + ~“~ = ;ay23 

with the boundary conditions 

u, = v, = 0, 7J=l at y=O, 

21, --+ 0, K-+0 as y-+ 00. 

F (3.2) 

(3.3) 

Neglecting squares of L and dividing by exp (iwt), we find that ul, rt_ Tr satisfy the following 
differential set, 

au au au au 
+td++u,~+ v,++v,---~ 

ax ax ay 1 a%, aq 
=3---, 

ay ay ax 
aT aT, a2y aT, 1 a2Tl 

ioT,+u,“+u,-+v,~+v,-=- ax ax OY aY (Tayz’ 

with the boundary conditions 

IA1 = vi = 0, Tl = 1 

ui -to, Tl -+ 0 

at y = 0, 

as y+co. 

Equations (3.2) and (3.3) are the boundary-layer equations which describe the steady state free 
convection flow over a semi-infinite horizontal flat plate maintained at a constant temperature ?&,. 
These equations are the same as those obtained by Gill and Casal [I] but the boundary conditions are 
different. They have assumed the existence of a uniform free stream velocity whereas in our case 
the free stream is assumed to be at rest. Thus the flow is purely due to buoyancy effects which 
induce a longitudinal pressure gradient given by 

which causes the flow. 
For flow below the plate, the co-ordinate y would be reversed to measure distances vertically 

downwards and the negative sign in equation (3.6) would be deleted. It follows with a flow above the 
plate for which T, > Tm or for a flow below the plate for which Tw < 7i,, the induced pressure 
gradient @j/Z? is negative resulting in an accelerated flow. For flow below the plate for T, > T, or 
for flow above the plate for T, < T,, the situation will be just reversed. It is therefore sufficient to 
consider only one of the four situations. For convenience we shall discuss flow above the plate for 
;r;, > 7=,. 

We shall first consider the set of equations which describe the basic steady flow. We shall integrate 
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these equations by Karman-Pohlhausen method since our aim is to get qualitative results. Towards 
this end we put these set of equations in integro-differential form by integrating from y = 0 to 
y = 6. where 6(x) is the dimensionless boundary-layer thickness, as 

($),=o+&j T,dy=Q 
0 

$/ u,T,dy +;(z)y=o = O. 

(3.7) 

(3.8) 

Consistent with the boundary conditions 

u, = 0, T,=l at y = 0, 

au, a2u, 
u, -7 y-+0, T,+O as y + 6, 

(3.9) 

8Y 8Y 

we take the expressions for u, and T, as 

(3.10) 

(3.11) 

where A and 6 are functions of x to be determined from equations (3.7) and (3.8). These expressions 
for u, and T, also satisfy the additional conditions 

d’“,=. 825 o -= 

ay3 ’ ay2 
at y = 0, 

which are obtained by evaluating the first and third equations of (3.2) at y = 0. 
Substituting these expressions (3.10) and (3.11) into (3.7) and (3.8). we get 

4A 3d 
--&4=0, 
d2 

&&(A@ - ; = 0. 

The solutions of these equations are easily found to be 

6 = 2Nxf, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where 

N = [;(&)+lO+]. 
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From these simple expressions we find that the boundary-layer thickness varies as ~4 and de- 
creases as the Prandtl number increases. It is also clear from (3.16) that (y/2x:) is the similarity 
variable for free convection from a horizontal plate. The Table 1 shows the values of (&2xS) for 
various values of 0. 

In Figs: 1-3 are plotted u,,‘x* and TV against y/2x$ for a fairly representative range of values of C. 
It is found that both the velocity and the temperature at any point within the boundary layer de- 
crease as the Prandtl number increases. 

The local heat-transfer at the plate is given by 

Kv2 aT, 0 - Kv2 x-+ 
40 = - - - 

i?w4 3Y y=o SW4 iv ’ 
Table f 

u = 0.01 LF = 0.1 CT = 0.72 0=I (r=S o= 10 

&/2x* 6.6349 4.1867 2.8215 26416 I.9146 I.6667 

2.4 

1.6 

-0.8 

FIG. 1. The steady and oscillating components of velocity 
and temperature for cr = 0.1. 
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I.2 I.6 2.0 2.4 

FIG. 2. The steady and oscillating components of velocity 
and temperature for D = 0.72. 

FIG. 3. 

-0.6l I 1 / I 
0.4 0.6 I.2 1.6 2.0 

Y 
2 Iz/: 

which can be expressed in terms of the Nusselt number as 

The steady and oscillating components of velocity 
and temperature for (r = 5. 

Nu, = qoL = 1,-: 
K(‘i’, - T@J N . 

Similarly the skin friction at the plate can be expressed as 

*d&L3 
To - PV2 

- 25 N'x-+. (3.18) 

(3.17) 

The expressions for Nu, xf and rz x* are calculated for various values of cr and given in Table 3. 
The table shows that the Nusselt number at the plate increases while the skin friction decreases as 
0 increases. 

Set (3.4) is next considered. It is convenient to write ul, or and T1 as the sum of in-phase and out- 

of-phase components as 
ui = u, + iu,, 

u1 = v, + iv,, (3.19) 

Ti = T, + iT,. 

Substituting into (3.4) and separating real and imaginary parts we get 

a 
[ 

au au au au 8% aq 

ay- CM.42 + us--1 + us1 + u,L + 0,s ax ay ax 1 = --3’ - _, 
ay ay ax 

(3.20) 

(3.21) 

aT aT aq az i a2q 
- WT, + us--1 + us---- + u,-- + ll- = -2 ax ay ax ay 0 ay 

(3.22) 
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with the boundary conditions 

li, = v, = 0, T,=l at y=O, 

zi, --, 0, T, + 0 as Y-‘S, 

and 

aT2 aT, ax aT 1 a2T2 
CDT, + us---- + us- + u2- + v,--s TC--~ 

ax ay ax ay c ay 

with the boundary conditions 

Thus 

u2 = v2 = 0, T, = 0 

n2 --f 0, T, + 0 

at y = 0, 

as y-+co. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

and 

will represent the phase shifts in the velocity and temperature fluctuations in the boundary layer 
due to fluctuations in the plate temperature. When the frequency of oscillation is low it is to be ex- 
pected that the phase shifts will be small. Therefore, one would expect u2 and T, to be small relative 
to u, and T,. Thus when o is small, the terms ( - CJXQ) and (- oT2) can be neglected in (3.20) and 
(3.22). u,, v, and T, will then be the quasi-steady solution corresponding to o = 0. This can also be 
seen from the fact that the same equations can be obtained by substituting u = u, + EU,, v = u, + tv, 
and T = T, + CT, in the steady flow boundary-layer equations. It can be easily verified that 

where To = (Tw - T,). With the help of equations (3.10) and (3.11) we have 

(3.28) 

(3.29) 

(3.30) 



FREE CONVECTION OSCILLATORY FLOW 725 

and v, can be obtained from the equation of continuity (3.21). 
We shall next consider equations (3.24) and (3.26) through (3.27). Accordingly we assume poly- 

nomials for uz and Tz as 

2 3 4 S 

ul=AO+A,~+A,~+A3~+A4$+ASB 
s3 a5 

(3.31) 

(3.32) 

where A’s and C’s are functions of x only. These will be determined by imposing the following 
boundary conditions on u2 and Tz and their derivatives : 

I42 = 0, T2 = 0 at y = 0, 

au, a2uz o 
U2=ay=F= t 

al-, a%, o 

T2==,Y=-= 
(3.33a) 

8YZ 
at y = 6. 

Two more boundary conditions can be generated by evaluating equations (3.24) and (3.26) at 
y=Oas 

i 
(3.33b) 

Equations (3.31) and (3.32) finally take the forms 

(3.34) 

(3.35) 

Here A, and C5 are still undetermined. They will be determined from the momentum integral 
equations corresponding to equations (3.24) and (3.26). Integrating equations (3.24) and (3.26) from 
y = 0 to y = 6 and making use of (3.25) and (3.27) we get the momentum integral equations as 

(3.36) 

(3.37) 
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Substituting equations (3.34) and (3.35) into (3.34) and (3.37) we get 

4A, wA --_ 
P 5 

(3.38) 

- $?A, - 
13 

- Aod3 
15120 

These differential equations can be easily solved to give 

A, = oFx. 

C, = oEx+, 

where E and F are constants given by 

125F - 10N3E - (6 + 100)N5 = 0 

and 

$!lV+ &(,I - I~G)-&V-&EN~-~~=O. 

The Table 2 shows the values of E and F for various values of (r. 

Table 2 

D = 0.01 I? = 0.1 0 = 0.72 cr=l (r=5 d = 10 

E - I.9945 - 4.3896 - 56952 -6.4591 - 14.3936 -21.3489 
F 440.4757 46.3781 8.6489 6.9392 3.4410 2.9989 

4. RESULTS 

When the frequency of oscillation is small, the temperature in the boundary layer and the longi- 
tudinal component of velocity may be written in the forms 

T= T, + ER,COS(Cfz + al), 

u = a, + t R, cos (ot + cc&, 
(4.1) 

where 

R, = (K2+ TZ,f. R, = (u2 + t&t I 

a, = tan- ‘(T,IT,), c(~ = tan- l(~z:u,). 

The functions u,., u2, T and T, are shown in Figs 1-3 for d = 0*1,0.72 and 5. a, is positive near the 
plate and negative away from the plate. For the values of B considered it is found that the lower 
is the Prandtl number. greater is the distance from the plate where a, changes its sign. On the other 
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hand, u2 is always negative and increases in magnitude as the Prandtl number decreases. This 
shows that the velocity fluctuations near the plate lag behind the plate temperature oscillations. 
On the other hand for cf = 01.7” is positive near the plate but for CT = O-72 and CT = 5,it is negative 
but T, remains positive. This shows that the temperature oscillations near the plate anticipate the 
plate temperature oscillations for small values of (T. This phase lead is more than compensated as CJ 
increases. 

The local Nusselt number at the plate can be expressed as 

where 

Nu = qL 
K(7’, - T,) = 

=Nu,+eNu,, 

The local skin-friction at the plate can be calculated as 

TLZ au 
.p=-= 2 

PV2 0 3Y 1‘=0 
+ t: exp (iwt) !.S 

0 aY y=o 

=&N2x-+ + cR,cos(ot + ad) 

= zg + 6.7: 

(4.2) 

(4.3) 

where 

R,= [(&$)2+$(&N5-F)2]i 

a4 = tan- ’ [~~(~N5-F11. 

This shows that both tan a3 and tan a4 vary as ox*. In Figs. 4 and 5 are plotted the functions 
(tan a,/oxt) and (tan a&d) against C. It is clear that tan aJ is positive for all values of c > 0.12, 
but tan a4 is always negative. This shows that the oscillating component of the Nusselt number at 
the plate anticipates while the skin friction lags behind the plate temperature oscillations. The 
amplitudes R, and R, are found to increase as o increases. The minimum values of R, and R,(tl, = 0) 
are given in Table 3 for various 0 along with ~3 and Nu,. 

It is interesting to note that the ratios [L Nu,(w = O)/Nu,] and [E z:(w = O)/$] remain constant 
for all values of 0. Thus for E = O-1 the quasi-steady Nusselt number is 12 per cent of the steady 
value whereas the skin friction coefficient is 6 per cent of the steady mean value. 

For high-frequencies, Lighthill [3] has shown that the oscillatory flow is of the “shear wave” 
type and its thickness is small compared to the steady boundary-layer thickness. Within this layer 
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the steady flow may be approximated as 

z & N’x-“y - & Nx-+y2 + . , 

~&N~x-~y’+ . . . . 

T,x 

Zl- A,+... . 

If we introduce the variable v = yJo in the equations (3.4) we get 

’ (4.4) 

, 

(4.5) 

This suggests that for large CO, a solution may be developed in inverse powers of Jo. We write 

1 1 
+-&a,, +-24 3 +..., 

cd l 

Tl = T,, +lTll +;T12 +$T,, + . . 
Jo 

. 

Substituting the series (4.6a) in equation (4.5) and using the approximated steady flow given by (4.4), 
we have for the first approximation 

a3ulo ho 
a’13 -z-=0, a? 
a2Tlo 
Tp- iaT,, = 0 
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Table 3 

x*R,(w=O) 
x*R4(ca= 0) 

x+ 7; 
X,NU, 

Nu,(w = 0) 

NW, 
q(6J = 0) 

To* 

u = 0.01 a = 0.1 * = 0.72 

0~1808 0.2866 @4253 
3.1696 1.2620 0.5732 
5.2826 2.1034 0.9553 
0.1507 0.2388 0.3544 

1.20 1.20 1.20 

0.60 0.60 0.60 0.60 060 060 

- LT=l CT=5 

0.4542 06268 
0.5025 0.2639 
0.8373 0.4399 
0.3785 0.5223 

1.20 I.20 

u = 10 

0.7200 
02000 
0.3333 
0.6000 

1.20 

subject to the boundary conditions 

%o - - 0, Tlo = 1 at q = 0, 

Ml0 -+ 0, T 10 -0 as q-+oa, 1 (4.7) 

The solutions of these equations give 

uio - - 0, 

Tlo = exp [ - Cic+u] 1 (4.8) 

which is unaffected by the steady mean flow. Interaction terms, however, appear in the subsequent 
higher approximations. 

FIG. 4. Tangent of phase angle of the oscillating temperature FIG. 5. Tangent of phase angle of the oscillating velocity 
gradient (low frequency). gradient (low frequency). 
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For the next approximation we have 

WI 
af12 

iaT,, = 0 

subject to the boundary conditions 

Ull = 0, T,, = 0 at q = 0. 

Uii -+ 0. T 11 -0 as ~+a. 1 (4.10) 

The solutions of these equations are evidently 

U - 0, 11 - T,, = 0. 

In a similar way TI 2 and u12 come out to be zero. In fact the next non-zero term in the expansion 
of TI is T13 and it satisfies the equation 

(4.11) 

with the boundary conditions 

T13 = 0 at ye = 0, 

T 13 +o as q-f%. (4.12) 

Solving we get, 

T13 = &oflN2~-s (4.13) 

The first non-zero term in the expansion of ui is found to be u,~ and it satisfies the equation 

84, .au16 aT,, 
ay13 -lx== 

with the boundary conditions 

U -0 16 - at q = 0. 7 

(4.14) 

u16 -+ 0. as r] -+ Co. 

The solution is 

53M4 - 10iM2 - 3 
u 16 = - 

2(M3 - iM)2 
exp [ - (Jihl - (M3 y iM) 

1 1 

( 

M2 - i 3M2 + i 

+2M2’+M3-iM 2M2 M 
ye + (3M2 - i)y2 

1 

1 (3M2 - 
(M3 - iM)2 

- i) (9M2 + i) _ 2(3M2 _ 

M 

i)21 ev ( - Mrl). 

i 

(4.15) 

(4.16) 

where M = ,,/(io). 
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When the frequency of oscillation is large the temperature field may be written as 

T = T, + t R, exp [ - (JO/~) ~1 cos [wt - (&/2) rl - CLJ 
where 

R, = (I': + Q:)", us = tan-’ (Q5/P5). 

(4.17) 

The local Nusselt number from the surface to the fluid for high frequencies may be written as 

where 

= N-lx-+ + c R,cos(ot + cl,& 

%I = tan-’ 
3(J2) N2 x-* 

500 (40) ,* . 

The velocity gradient at the plate can be written as 

Re($jzo = ($=. - to-*&cm e,, -q, (4.19) 

where 

It is interesting to note that for very high frequencies, the velocities set up will be extremely 
small being of the order of we3. The Nusselt number at the plate has a phase lead which tends to 
shear wave value 7r,/4 as o + co, while the skin-friction has a phase lag of 7c/4. These results are the 
same as obtained by Nanda and Sharma [4] for a vertical plate. 
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R4aum6-La convection naturelle transitoire A partir d’une plaque horizontale ~mi-in~nie est anaty&e 
lorsque la temptrature de la plaque varie p~riodiquement dans le temps autour d’une vafeur moyenne 
con&ante. On ktabiit des solutions &par&es pour les gammes de frbquences basses et Clew&s. On trouve 
que la valeur quasi-permanente (w = 0) du nombre de Nusselt sur la plaque croit lorsque le nombre de 
Prandtl augmente. Pour des frkquences trc?s &e&es le champ de tempkrature est du type onde de cisaille- 
ment non modi% par l’tcoulement moyen permanent. 

Zusammenfassq-Instationlre freie Konvektion von einer halbunendlichen waagerechten Platte wird 
wird fiir den Fall analysiert, dass sich die Plattentemperatur periodisch um einen konstanten Mittelwert 
andert. Getrennte Liisungen sind fiir niedrige und hohe Frequenzen ermittelt. Es zeigt sich, dass t?ir 
niedrige Frequenzen die Schwingungskomponente der Nusseltzahl an der Platte zunimmt, bei zuneh- 
mender Prandtlzahl. Fiir sehr hohe Frequenzen zeight das Temperaturfeld Scherwellen und bleibt unbe- 
einflusst vom mittleren stationlren Fluss. 

~OTa~~-~pOBe~eH aaaJIH3 KpoQecca ~e~Ta~KOHapH0~ cuo60~~0~ KoH~e~~~~ nony- 
6ecKoHe~Ho~ POpK3OHTa~b~O~ ~~acTKH~ rips9 ~epKo~M~ecK0~ ~a~eHeH~K co BpeMeseH ee 

TeMnepaTypn. fionyreeH 0Tgenbane perueHKR AZR ~Ka~aaoHoK Bf2coK~x kf HnaKnx 9acToT. 

HaftgeHo, 9~0 c POCTOM wicna npaH&TTnR yBeJsw%BaeTc~ KsaawraqLtoHapHoe aHaqeH&se 

fW = 0) KpnTepnH HyccenbTa. npMi OUeHb 6onbmnx YaCTOTaX IIOJie TeMnepaTypn CXO~HO c 

B0~1~0ti KacaTenbHoro HanpKmeKnfi, Ha 3aBficRqett oTcTaqnoKap~or0 noToK8. 


